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Abstract

In this paper we explore hybrid parallel global optimization using DIRECT and asynchronous gener-
ating set search (GSS). Both DIRECT and GSS are derivative-free and so require only objective function
values; this makes these methods applicable to a wide variety of science and engineering problems. DI-
RECT is a global search method that strategically divides the search space into ever-smaller rectangles,
sampling the objective function at the center point for each rectangle. GSS is a (local) search method
that samples the objective function at trial points around the current best point, i.e., the point with
the lowest function value. Latin hypercube sampling (LHS) can be used to seed GSS with a good start-
ing point. Using standard global optimization test problems, we compare the parallel performance of
DIRECT and GSS with hybrids that combine the two methods. The hybrid methods are much faster
than DIRECT and scale better when more processors are added. This improvement in performance
is achieved without any sacrifice in the quality of the solution — the hybrid methods find the global
optimum whenever DIRECT does.
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1 Introduction

We consider the problem of global optimization for computationally expensive black-box objective functions
with a small number of parameters (say, less than 10). Such problems often arise in science and engineering
when the objective function is based on a complex computer simulation used to model, for example, a physical
phenomenon that is difficult or expensive to replicate in an experiment. The code for such simulations is
oftentimes so complex that we treat it as a “black box” for the purposes of optimization; as a result, we
do not have access to any detailed information about the function, including gradients. Many times, these
simulations are expensive, requiring minutes, hours, and even days to complete individual runs. We propose
solving such problems on a distributed cluster of computers, where multiple function evaluations may be
computed in parallel. The limiting factor for our intended users is wall-clock time, e.g., the user wants the
best answer that can be computed in a pre-designated amount of time.

Beyond the lack of gradient information, black-box optimization problems are innately difficult because
the structure of the objective function (e.g., smoothness, continuity, computational error) is usually unknown.
In fact, in our experience, there are often points in the bound-constrained region where the simulation
unexpectedly fails or linear or nonlinear constraints are violated; in these cases, we assign the objective
function a value of +∞. Mathematically, the problem we considered is of the form

min
x∈Rn

f(x)

subject to ` ≤ x ≤ u.
(1)

Here f : Rn → {R,+∞} is the objective function (incorporating any linear or nonlinear constraints), and
finite upper and lower bounds exist for each variable with `i < ui for i = 1, . . . , n. In practice, f(x) typically
approximates a smooth function but has errors due to truncation error, stochastic estimations, etc., and may
have discontinuities due to explicit or implicit constraints.

The nature of these problems limits the choices in optimization methods. First, the presence of noise
implies we must use direct search methods because they do not attempt to directly use, estimate, or model
derivatives [36]. Second, since the function evaluations are expensive, metaheuristics such as genetic algo-
rithms and simulated annealing [39, 35, 21] are not appropriate because they tend to require a large number
of function evaluations. Third, surrogate-based modeling methods are ruled out because they are not easily
parallelized and it is unclear what to do with undefined points (ignoring undefined points risks returning
again and again to a bad region, while assigning arbitrary large values may distort the model).

Having ruled out derivative-based methods, metaheuristics, and surrogates, we focus on sampling meth-
ods. DIRECT [34] is a well-known global optimization method that is already popular for this class of
problem. It strategically refines the search space into ever-smaller rectangles, balancing local and global
refinement. The drawback of DIRECT is that it has poor load balancing and sometimes has problems iden-
tifying the exact solution even if it is close to it. Another popular method is generating set search (GSS) [36],
and we specifically consider its asynchronous parallel implementation in the APPSPACK software package
[35, 21]. This method is attractive because it has excellent parallel load balancing. The drawback of GSS is
that, even though it is often used to solve global optimization problems, it was not designed for that purpose
and only guarantees convergence to a local optimum. Our goal here is to combine the strengths of these
two methods to create an asynchronous, parallel, hybrid method for reliably finding good solutions to global
optimization problems.

Our framework generalizes the parallel hybrid model implemented in Gray et al. [24] that used Treed
Gaussian Process Models (TGP) and GSS simultaneously for electronic calibration problems. In their
approach, TGP models are constructed from the cache of evaluated points. These models are used to predict
new trial points that either reduce the objective function or reduce uncertainty in the corresponding model.
The trial points produced by TGP are also fed to GSS, which conducts a local search around the current
best point. Both GSS and TGP trial points are evaluated asynchronously in parallel using an adaptation
of the APPSPACK software [21]. We note also that our approach is similar to [56, 55] in which DIRECT
is followed by several iterations of multidimensional search or generalized pattern search (both variants of
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GSS). In our case, though, the two methods are run simultaneously.

The paper is organized as follows. In §2, we review DIRECT (§2.1); asynchronous parallel GSS (§2.2);
and LHS (§2.3). In §3, the new parallel hybrid approach that combines DIRECT and GSS is described.
In §4, we review related work and describe our approach in the context of hybrid optimization, using
the categorization method proposed by Raidl [50]. Numerical results on standard global optimization test
problems are provided in §5, and the conclusions and future work are discussed in §6. Details of the test
problems are provided in Appendix A.
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2 Background

Without loss of generality, in the discussion that follows, we assume that (1) has been transformed to the unit
hypercube so that ` = 0 (the vector of all zeros) and u = 1 (the vector of all ones). This can be accomplished
by affinely transforming the variables to get x̃ = S−1(x− `) with S = diag(u1 − `1, . . . , un − `n). Then (1)
becomes

min
x̃∈Rn

f̃(x̃) = f(Sx̃+ `)

subject to 0 ≤ x̃ ≤ 1.
(2)

2.1 DIRECT

Jones, Perttunen, and Stuckman [34] developed DIRECT, short for Dividing Rectangles, as a derivative-
free, deterministic sampling algorithm for global optimization on a bound-constrained region. Subsequently,
others have analyzed, enhanced, and tested the method; see, e.g., [33, 18, 19, 9, 3, 15, 14, 52, 41, 16, 8].
DIRECT systematically divides the feasible region into hyperrectangles of decreasing size and evaluates
the objective function at the hyperrectangle centers. DIRECT strategically balances local search (subdi-
viding hyperrectangles whose centers have the smallest function values) and global search (subdividing the
largest hyperrectangles) to find the global minimum efficiently. DIRECT’s global convergence for continuous
functions is assured because it eventually samples a dense subset of the domain [34].

We refer the reader to the references above for the details of DIRECT, and Algorithm 1 gives a high-level
summary of the algorithm. At each iteration, a subset of the hyperrectangles are selected for subdivision. The
function values at what will be the new hyperrectangle centers are computed, and the selected hyperrectangles
are divided. Figure 1 shows what three iterations of DIRECT might look like for a two-dimensional problem.
In the first iteration, there is only one hyperrectangle and it is split. There is some choice as to how to create
the splits (the long boxes could be horizontal rather than vertical), which is discussed in detail in [34]. The
result is shown in the center figure. At this point, two hyperrectangles are selected for subdivision. For
each hyperrectangle that is subdivided, 2n function values are required. Choosing which hyperrectangles to
subdivide at a given iteration (in Step 1) requires computing the lower convex hull on a plot of rectangle
size versus the function value at the center. An example is shown in Figure 2. Here we see the points
(d, f(c)) for every hyperrectangle where d is a measure of the hyperrectangle size (specifically the distance
from the center to any vertex), and f(c) is the function value at the center. The method also plots the
point (0, fmin − ε|fmin|) where fmin is the minimum function value discovered so far and ε is a user-defined
parameter. The “potentially optimal” hyperrectangles are those that fall on the lower convex hull on the
these points, as illustrated in the figure by white circles. Smaller values of ε cause the search to be more
local while larger values make it more global. In our experiments, we use ε = 0.01 because it is the value
originally used by Jones et al. [34].

Algorithm 1 DIRECT
Let H denote the set of hyperrectangles (initially the entire domain) and evaluate its center point. While
the function evaluation budget is not exhausted, repeat the following:

1. Choose a set S ⊆ H of “potentially optimal” hyperrectangles to subdivide.

2. For each hyperrectangle in S, do the following.

(a) Let c denotes its center. Let I ⊆ {1, . . . , n} denote the dimensions of the long edges.

(b) Compute f(c+ δei) and f(c− δei) for each i ∈ I where δ is 1/3 the length of the long edge.

(c) Based on the function values just computed, divide the hyperrectangle. The points c ± δei for
i ∈ I are the centers of the new hyperrectangles.
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Figure 1: DIRECT strategically subdivides one or more hyperrectangles at each iteration.

fmin

fmin − ε|fmin|

Figure 2: Potentially optimal hyperrectangles are selected by computing the lower convex hull on a plot of
rectangle size versus objective value.
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DIRECT is a robust method because it works with black-box function evaluations and is insensitive
to discontinuities, missing values, and other common problems. It is also easily parallelized because it
computes multiple function evaluations per iteration. Therein, however, also lies one of its drawbacks.
Because the number of function values at each iteration is usually different, parallel load balancing is a
challenge. Moreover, DIRECT can sometimes require a large number of function evaluations to reach a
global minimum, especially if the minimizer is on a hyperrectangle boundary. Hybridizing DIRECT will
help us to overcome some of these weaknesses.

2.2 Asynchronous parallel GSS

GSS [36] is a class of derivative-free optimization methods that search the parameter space according to
a specified search pattern (usually the plus and minus unit directions) and a changing step size. In two
dimensions, the simplest example is compass search. At each iteration, the search samples north, south,
east, and west from the current iterate according to the distance specified by the step length. If an improved
point is found, it becomes the next iterate. Otherwise, the step length is halved. Typically the procedure is
halted when the step length becomes sufficiently small. Algorithm 2 shows a basic GSS algorithm; we refer
the reader to [36] for details. Note that 2n function evaluations are required at each iteration, which makes
the method easy to parallelize. GSS has been extended to handle linear [38, 42] and nonlinear constraints
[43, 37]. GSS is a local optimization method, meaning that it is guaranteed to globally converge to a local
stationary point (or KKT point) if the objective function is sufficiently smooth.

Algorithm 2 A basic GSS algorithm for a bound constrained problem
We are given x0 (the initial starting point), ∆0 (the initial step size), and α > 0 (the sufficient decrease
parameter). We let D be the plus and minus unit directions. Each iteration proceeds as follows.

1. Generate trial points Qk = {xk + ∆̃kdi

∣∣∣ 1 ≤ i ≤ |D|} where ∆̃k ∈ [0,∆k] denotes maximum feasible
step along di.

2. Evaluate all trial points in Qk

3. If there exists a point y ∈ Qk such that f(y) < f(xk)− α∆2
k, then xk+1 = y. Successful iteration.

4. Otherwise xk+1 = xk and ∆k+1 = ∆k/2. Unsuccessful iteration.

5. k = k + 1.

Asynchronous parallel GSS is a variant of GSS that does not wait for all trial points to be evaluated (in
Step 2) before proceeding to the next iteration [35]. This method has been implemented in APPSPACK [21]
and extended to handle linear [26] and nonlinear constraints [25]. This method can also be shown to globally
converge to local stationary points. It has the advantage of better load balancing and can significantly reduce
parallel run-times [35, 25]. Therefore, we use the asynchronous version in the experiments in this paper.

GSS (and particularly its asynchronous implementation in APPSPACK) is a popular method because
it does not require derivative information, nor does it explicitly attempt to model the underlying function.
GSS thus tends to be more robust for difficult optimization problems (that may be noisy, with occasional
non-smooth, discontinuous, and or undefined “feasible” points), than derivative or model based approaches
that break down at points where the function or derivative cannot be computed. APPSPACK has been
used to solve a wide variety of problems; see, e.g., [40, 44, 7, 28, 6, 47, 46, 11, 29, 60]. Although GSS is a
local solver, it is often used for solving global optimization problems. Our results demonstrate the GSS can
be extremely effective on global optimization problems. Past work by Gray et al. [22] showed that GSS is
competitive with simulated annealing on a transmembrane protein structure prediction problem. Recently,
both GSS (implemented in APPSPACK) and DIRECT were compared directly on a set of groundwater
modeling problems and APPSPACK converged more quickly to the solution [17]. Therefore, the motivation
for hybridizing GSS is that it is already used for global optimization and is competitive in some sense
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with other global optimization methods like simulated annealing. Hybridizing GSS with a method such as
DIRECT will make it more robust for global optimization.

Before we conclude this section, we note that there is one feature of GSS that makes it particularly
amenable to hybridization — it can “jump” to a point with a lower function value at any iteration. The
easiest way to consider this is that it restarts its search. Algorithmically, we assume we get back Qk as well
as extra external points Ek in Step 2. Then we modify Step 3 to say:

If there exists a point y ∈ Qk such that f(y) < f(xk) − α∆2
k or a point y ∈ Ek such that

f(y) < f(xk), then xk+1 = y.

It is also a good idea to reset the step length ∆k to some nominal value whenever an external point is
selected as the next iterate. This equates to restarting the method whenever an improved external point is
discovered. This can be thought of as a “search” step in the generalized pattern search framework discussed
in [2].

2.3 Latin hypercube sampling

Latin hypercube sampling (LHS) is a form of constrained Monte Carlo sampling developed by McKay,
Conover, and Beckman [45] to improve the accuracy of statistical measurements (such as expected values
and variable correlations) in higher dimensions using a minimal number of function evaluations. LHS has
since become a popular mechanism to aid in the analysis and construction of computer simulation models.
In-depth descriptions of LHS can be found in [32, 57, 27].

From an optimization standpoint, LHS is attractive because it is a straightforward algorithm for gener-
ating trial points with desirable statistical properties. Further, the user may choose the number of desired
trial points independent of problem dimension. To put this in perspective: a naive approach to exploring
the feasible region is to use coarse-grid sampling where each dimension is divided into, say, ten equal regions
and the grid points are sampled. In two dimensions such a partition results in 121 trial points, but in ten
dimensions this results in 1110 sample points. LHS, in contrast, is a more efficient mechanism to effectively
explore the feasible region. Figure 3 shows the points that LHS might select as compared to the points that
a grid-based sampling would choose.

Figure 3: Grid and LHS sampling.

From an optimization point of view, LHS is a tool to get an initial “lay of the land.” The results of LHS
might be used to estimate characteristics of a given objective function such as smoothness. In our situation,

14



we use LHS as a mechanism for sampling more points that DIRECT and GSS would do one their own and
to, therefore, assist GSS in its search. There are, of course, other sampling strategies which may be used
instead of LHS; see [51, 13] for comparisons of different methods.
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3 Hybrid optimization using parallel solvers (HOPS) algorithm

Our goal in using hybridization is twofold. First, better parallel load balancing will be achieved by combining
the trial points from all solvers into a single evaluation queue so that they can be efficiently distributed to
worker processes. Second, each solver will see the results of all trial point evaluations and can potentially
use that information to improve its own search.

The hybrid solver is comprised of a set of P individual citizen solvers. Each individual citizen maintains
its own evaluation queue, denoted Qp. At each iteration, HOPS assembles the individual queues into a
global evaluation queue, denoted Q. Points are selected from Q for evaluation. The number of points
selected depends on how many worker processors are available. The set of evaluated points are returned in
the set denoted by R. The hybrid solver is asynchronous because it does not wait for all the points in Q to
be evaluated, but rather returns points to the citizen solvers as the evaluations complete. A description of
the algorithm is shown in Algorithm 3 and an illustration of the process is shown in Figure 4.

Algorithm 3 Hybrid optimization using parallel solvers (HOPS)
We are given P solver “citizens” and initialization information for each solver. Each citizen has an associated
evaluation queue, Qp, that is initially empty. At each iteration, we also create a return set of evaluated points,
R, that is initially empty. Each iteration of the hybrid method proceeds as follows:

1. For each citizen (p = 1, . . . , P )

(a) Send the set of all evaluated points, R, to citizen p.

(b) Allow the citizen to push points onto the end of Qp and to pop off points (from anywhere in Qp)
that are no longer needed.

2. The mediator assembles all the points into a global queue, Q, by interleaving the points in Q1 through
QP .

3. For every available worker, the conveyor pops a point from the front of Q and submits it for evaluation.

4. The mediator disassembles the global queue, Q, into the individual queues, Q1 through QP , to be
updated by the citizens in the next iteration.

5. The mediator retrieves the set of evaluated points for this iteration in R.

3.1 Citizen solvers

Each citizen solver is an independent entity which may be complex or simple. Here we discuss the four
citizens used in the experiments in this paper and shown in Figure 4.

The LHS citizen generates a single queue of trial points at initialization using the methodology described
in §2.3. Its queue is slowly exhausted as the iterations of the hybrid solver progress. It entirely ignores the
returned points (R), never generates any new points, and never deletes any points from its queue.

The DIRECT citizen corresponds to a synchronous iterative global optimization method as described in
§2.1. Moreover, our implementation runs DIRECT as a separate (parallel) process. We use an open-source
Fortran implementation of DIRECT by Gablonsky [18, 19]. This version of DIRECT takes a pointer to
an “evaluation function”, which in our case passes the set of points to be evaluated to the mediator (via
MPI) to be evaluated via the conveyor, as described in Algorithm 3 and illustrated in Figure 4. The only
minor modification made to Gablonsky’s DIRECT code is the addition of a mechanism to cause it to exit
when given an external signal. In this case, we are using a synchronous algorithm within an asynchronous
framework. Further, we note that the DIRECT citizen ignores all the evaluations that were done for other
citizens — it only uses the function values corresponding to its own trial points.
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Figure 4: HOPSPACK Illustration. Points are submitted and evaluated asynchronously; no method can
force another to wait. Evaluation processors never run idle unless all citizens have submitted empty trial
point queues.
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The GSS citizen corresponds to asynchronous GSS, as described in §2.2. At each iteration, it adds and
deletes points to its queue, depending on the new evaluations it receives. It is the only citizen that can use
the information generated by the other citizens. As discussed previously, it can greedily shift its search to
whatever point is best so far, regardless of how that point was discovered.

The Listener citizen does not generate any points to be evaluated, so its queue is always empty. This
citizen is used as a reporting agent in our experiments because it sees all the points that have been evaluated.
We mention it as an extreme example of what a “citizen” can be.

The different citizens are summarized in Table 1. At least one citizen must use the points generated by
the other citizens for the hybrid method to be effective. In this case, the GSS citizen serves that role.

Table 1: Features of different types of citizens.

Feature LHS Direct GSS Listener
Generates points to be evaluated Yes Yes Yes No
Uses its own points No Yes Yes N/A
Uses points from other citizens No No Yes N/A

3.2 Evaluating trial points

Trial points are evaluated using the conveyor mechanism from APPSPACK, as described in detail in [21].
Here we highlight its features and describe a new modification. The general purpose of the conveyor is to
pop points from the evaluation queue, assign them to worker processes, and collect and return the results
as they become available. Each function evaluation is computationally expensive (requiring minutes, hours,
or days to complete) and the time to complete the evaluation varies according to the inputs, computational
loads on the processors, random starting conditions, etc.

A particular feature of the conveyor is that it does not reevaluate the same point twice — all function
evaluations are stored in a cache for future reuse. (In fact, the cache can even be saved and reused across
multiple runs.) For cache look-ups, we consider points x and y to be the same if

‖xi − yi‖ ≤ γsi, for i = 1, . . . , n.

Here s is a scaling vector that is set to s = u− `, and γ is a user-defined tolerance that is set to γ = 10−11

in our experiments.

The procedure that the conveyor follows is shown in Algorithm 4. The function value cache is stored as a
splay tree, which is described in detail in [21, 30]. Our additional modification is to also avoid re-evaluating
points that are currently being evaluated.

Algorithm 4 Conveyor submits points for evaluation
While one or more free worker processes is available:

1. Pop x off the front of Q.

2. Check the function evaluation cache to see if the point has already been evaluated. If so, retrieve
f(x) from the cache and add the evaluated point to R.

3. Check the pending evaluation cache to see if the point has already been assigned to a process. If
so, wait until that evaluation completes and return the value for this point as well.

4. Otherwise, assign the point x to a free worker process for evaluation and mark the worker process as
busy.
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As evaluations complete, the worker processes are marked as free, the function values are cached, and
additional identical points also have function values assigned, and the values are returned in R.

3.3 Stopping conditions

The problem of when to stop a hybrid solver is complicated because each citizen may have its own stopping
criterion. We have the option of waiting for every citizen to request a stop, of waiting for a particular solver,
or of imposing some external condition. In our case, we use an external condition. We let the hybrid method
iterate until either the function evaluation budget is exhausted or the objective function reaches a pre-defined
target.

Each citizen may also stop at some point. In our case, the GSS method will stop when its step length
reaches a given tolerance (i.e., it has converged to a local minimum). It will only continue again if an
improved point is found by another citizen, which essentially restarts the method. The details of software
structure and implementation of HOPS will be described in a forthcoming publication.
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4 HOPS in the context of hybrid optimization

Hybrid optimization, a popular approach in the combinatorial optimization community, combines meta-
heuristics such as genetic algorithms, tabu search, ant colony, and variable neighborhood search to improve
robustness of the methods, seeking to combine the distinct strengths of different approaches [1]. Recently,
metaheuristics have been combined with deterministic methods such as pattern search to form hybrids that
perform global and local search; see, e.g., [48, 5, 61, 59, 55, 54, 12, 24]. As mentioned in §1, the new ap-
proach described in this paper generalizes Gray et al. [24]; see also closely related work in [23, 53]. Following
Puchinger and Raidl [49] and Raidl [50], we describe how HOPS fits into the general class of hybrid opti-
mization according to the following characteristics: 1) the level of hybridization (i.e., the degree of coupling
between the methods), 2) the order of execution (interleaved or sequential), and 3) the control strategy
(integrative or collaborative).

4.1 Level of hybridization

Hybrid methods can be loosely or tightly coupled. Loosely coupled means that the algorithms retain their own
identities, whereas tightly coupled algorithms exchange specific low-level information [49]. HOPS is loosely
coupled, allowing each solver citizen to retain its own identity and run independently of the others. In fact,
as illustrated in the case of DIRECT, it is possible to combine existing software into the HOPS framework
with little or no modification. The individual solver citizens are interchangeable. This is beneficial from
both a software development and theoretical perspective because it avoids the problem of reimplementing
existing methods and enables us to retain the convergence theory of the individual methods.

4.2 Order of execution

The solvers in a hybrid method can be executed one by one (also known as batch or sequential execution)
or have their executions interleaved [49]. Using the results of one solver as the starting point for another
is an example of a sequential hybrid. In [55], a few iterations of DIRECT are followed by a few iterations
of generalized pattern search (a special case of GSS). Other examples of integrating GSS into a sequential
hybrid algorithm may be found in [48, 61, 54]. In our strategy, the executions are interleaved, though it is not
the case that the iterations of the individual solvers are necessarily interleaved. For example, DIRECT has
to wait until all the points from its previous iteration are complete before it can perform its next iteration
and generate new points. Asynchronous GSS, on the other hand, performs an iteration for every iteration
of the hybrid.

4.3 Control strategy

Finally, hybrid algorithms may be viewed as integrative or collaborative [49]. In an integrative approach, one
method is subordinate to another; for example, an inner optimization algorithm refines candidate solutions
discovered in an outer loop. In collaborative optimization, both algorithms are given equal importance
and control. Collaborative approaches may, for example, combine homogeneous algorithms that operate in
separate regions of the domain. Our approach is collaborative because each citizen runs independently of
the others. As mentioned earlier, GSS has a built-in mechanism to accept trial points from other sources
(without effecting its local convergence theory); hence the steady stream of external DIRECT and LHS are
easily incorporated into the GSS method.
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5 Numerical results

In order to evaluate the effectiveness of HOPS, we compare hybrid and non-hybrid methods on standard
global optimization test problems. Our computational platform is the “Shasta” high-performance computing
environment at Sandia National Laboratories. Each compute node has a Dual 3.06 GHz Intel Xeon processor
and 2 GB of RAM. We run two MPI processes per node because of the dual processors. We test with 8, 16,
and 32 processors (corresponding to 4, 8, and 16 nodes, respectively).

Our test problems comprise nine standard functions from the original DIRECT experiments [34]. To add
some measurable expense to the cost of evaluating the function, we randomly waited between one and five
seconds before completing each evaluation; this is a strategy that has been used in our past research as well
[31, 26]. Details of the test problems, including the global minimums, are provided in Appendix A. We use
the standard stopping criteria based on percent error [34, 4]. Specifically, if f∗ is the global minimum, then
the current iterate x must satisfy

100
f(x)− f∗
|f∗|

< 0.01. (3)

A trial is considered successful if it satisfies (3) when HOPS terminates.

We compared the following four methods, all implemented within the HOPS framework:

• GSS (G);

• DIRECT (D);

• GSS and DIRECT (GD); and

• LHS, GSS, and DIRECT (LGD).

GSS and DIRECT are standard methods and their implementation within DIRECT does not change their
performance. The other two methods (GD and LGD) are hybrids. In GSS (both for single and hybrid
implementations), we set the parameters as follows: (a) The contraction factor is set to 1/3 rather than the
standard 1/2 so that it better mimics DIRECT’s pattern of points. (b) The step tolerance (which controls
when GSS stops refining its step length and causes the method to exit when it is running alone or wait until a
better external point is found) is set to 10−4. (c) The sufficient decrease parameter was set to 10−8. (d) The
trial points at each iteration are ordered randomly before being submitted to the queue. In DIRECT, we set
ε = 10−4 and limited the number of iterations to 10,000. In LHS, we set the number of trial points to 50.
We limited the overall number of function evaluations to 15,000, and we set the cache comparison tolerance
to 10−5.

For each combination of problem, method, and number of processes, we ran five trials and report average
results. GSS generally requires a different number of function evaluations for every run because it is asyn-
chronous. DIRECT, on the other hand, is deterministic and always uses the same number of evaluations
for the same problem, although the overall program does stop as soon as it finds a point which satisfies the
stopping criteria — this means that it may stop in the middle of a set of DIRECT evaluations.

Figure 5 shows results on Branin [4, 34]. In this case, every trial was successful. Looking first at the
non-hybrid methods, we see that GSS requires roughly 1/2 the function evaluations of DIRECT and 1/6 of
the time; the reason for this disparity is that asynchronous GSS is better load-balanced. Neither method
realizes any benefit by increasing the number of processors. GSS never has more than 2n evaluations running
simultaneously and so can only use 5 processors (4 workers and one master). Note also that, even though
GSS is a local method, it is able to find the global solution using fewer function evaluations and less time
than DIRECT. In fact, GSS can be considered as an alternative to DIRECT because it is able to solve many
problems that DIRECT can solve and often much more quickly. This is our motivation for combining them.

The hybrid methods combine the best features of these methods. The hybrid GD method is fastest overall
and also uses the fewest function evaluations. Observe that the hybrid LGD method gets the most benefit
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from adding more processors. It uses nearly as many function evaluations as DIRECT but only requires 1/3

to 1/6 as much time. Moreover, there is near-perfect scaling from 8 to 16 processors, though very little benefit
is realized from 16 to 32 because the problem is so small. Figure 5b shows the breakdown of evaluations by
citizen within the hybrid method. For both hybrid methods, GSS used the most evaluations.
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Figure 5: Average results over five runs on Branin (n = 2) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.

Figure 6 shows the results on the Six-Hump Camel problem [58], and every trial was successful. Once
again, DIRECT is the most expensive method in terms of both the number of function evaluations and run-
time. GSS and the hybrid GD method are nearly equivalent in runtime and the fastest overall, approximately
ten times faster than DIRECT. The hybrid LGD is about the same speed for 16 or 32 processors.
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Figure 6: Average results over five runs on Six-Hump Camel (n = 2) for 8, 16, and 32 processors.
The values in parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors,
respectively.

For the first two problems, GSS was arguably the best method. On Goldstein and Price [10] (see results
in Figure 7) we see the problem with using GSS alone because GSS failed on some of the trials. So, even
though it was fastest overall when it was able to solve the problem, it is not robust. Both hybrid methods
are robust, though, and require only 1/5 of the running time of DIRECT.
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Figure 7: Average results over five runs on Goldstein and Price (n = 2) for 8, 16, and 32 processors.
The values in parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors,
respectively.

The results for Hartman 3 [10], in Figure 8, are similar to those of the previous problem. GSS cannot
always find the global solution. The hybrid methods can, however, and in less than 1/2 the time required by
DIRECT.
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Figure 8: Average results over five runs on Hartman 3 (n = 3) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.

Thus far, we have not seen an advantage to adding an LHS citizen to our hybrid method. Generally, the
hybrid LGD has usually been slower than the hybrid GD on 8 processors and about the same speed on 16
or 32 processors. On Hartman 6 [10], shown in Figure 9, we see that there can be a major advantage to the
LHS sampling. This is a problem that requires 1,200 function evaluations in the worst case. The addition
of the LHS sampling on some runs assisted GSS in quickly finding the global minimum. Also, as this is a
problem with n = 6 variables, the benefits of scaling up the number of processors are more obvious. We also
note that GSS could only solve this problem in one of 15 trials.

On the Shekel problems [10], shown in Figures 10, 11, and 12, we see that GSS once again fails in many
of the trials and DIRECT always requires the fewest overall function evaluations. Despite this seeming
disadvantage, though, the hybrid methods are always faster. For example, consider Shekel 5 on 32 processors
(see Figure 10). The hybrid LGD requires more than twice the number of evaluations as DIRECT but is
about four times faster.
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Figure 9: Average results over five runs on Hartman 6 (n = 6) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.
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Figure 10: Average results over five runs on Shekel 5 (n = 4) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.
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Figure 11: Average results over five runs on Shekel 7 (n = 4) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.
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Figure 12: Average results over five runs on Shekel 10 (n = 4) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.

Shubert (see Figure 13) [58] is a problem that is well known to be difficult for DIRECT and requires
3,000 function evaluations to solve. GSS cannot solve the problem at all. The hybrid GD method for the
most part does DIRECT iterations, as can be seen in Figure 13b, and requires more evaluations overall
than DIRECT, but it is still slightly faster than DIRECT. The hybrid LGD still requires a large number
of DIRECT evaluations but overall requires the fewest evaluations and is fastest. In this case, we see little
to no speed-up in going to a greater number of processors because DIRECT is the only citizen working for
most of the time. GSS will stop running when it is locally converged, waiting for DIRECT or LHS to find a
better solution than the best it has found so far.
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Figure 13: Average results over five runs on Shubert (n = 2) for 8, 16, and 32 processors. The values in
parentheses indicate how many trials were solved successfully for 8, 16, and 32 processors, respectively.

Overall, both GSS and the hybrid methods are much faster in parallel than DIRECT, even when they
require more function evaluations. This is because these other methods have better load balancing. Unlike
GSS, which is asynchronous, DIRECT submits its trial points in batches. The next iteration of DIRECT
cannot start until all points in the last batch have been evaluated. Suppose for example, that DIRECT
submits 9 trial points. If only 8 evaluation processors are available each function evaluation takes 1 hour,
then 2 hours will be required to evaluate all 9 points with 7 processors sitting idle during the second hour.
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GSS, on the other hand, is an asynchronous method that was designed for good load balancing. Its
iterations proceed as soon as one or more points have been evaluated. However, its current implementation
can only scale to approximately 2n + 1 processors. Past that point, extra worker processors will sit idle.
GSS is able to solve some of the global optimization problems, but is not a good alternative to DIRECT
in general because it is not robust. One solution that has been used in the past is to start GSS at many
different points; see [22].

The hybrid methods combine the positive features of GSS and DIRECT. The hybrid methods have good
load balancing because they mix LHS, GSS, and DIRECT evaluations together. Our numerical results
demonstrate runtimes that are always faster than DIRECT and generally as fast as GSS. These methods are
also robust and successfully completed every trial in our example set. If enough processors are available, the
hybrid LGD is generally to be preferred over the hybrid GD because of its robustness and speed. We have
observed on other problems that the extra “boost” from LHS can be substantial, as in Figure 9. That said,
most of the time the hybrid GD is the fastest method, especially when the number of processors is small.
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6 Conclusions

In this paper, we have explored the benefits of parallel hybrid optimization combining GSS, DIRECT, and
LHS. In addition to the motivations provided in the introduction, a major incentive for this work came
from users of APPSPACK (which implements asynchronous GSS), who often reported using GSS for global
optimization problems. In fact, most users of optimization software are looking for a global optimum. At
the same time, these users are not interested in a code that requires more time to solve the problem than
their favorite local solver. The hybrid methods presented here are viable options for these users because, as
reported in §5, they run as fast as GSS but are as robust as DIRECT. Another advantage of these methods
is that they can use more processors than either GSS or DIRECT alone.

Our hybrid scheme was a relatively simple one, but it is possible to consider many more options. For
example, we could run multiple variants of DIRECT and GSS with different options. In our problems, we
found that a step length reduction factor of 1/2 in GSS was better on some problems than 1/3. We could
easily run two copies of GSS, one with each option. Likewise, there are several parameters in DIRECT that
could be modified, especially the ε used in the determination of the potentially optimal rectangles.

Additionally, the algorithmic and software framework of HOPS described in §3 can be used with any
solver citizen. The HOPS code is object-oriented and provides a generic interface for citizens. Previously,
we have considered the problem of modifying DIRECT to use function evaluations from other citizens [20].
Other work [24, 23, 53] uses an early version of the HOPS framework to combine GSS, TGP, and LHS.
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A Test problem descriptions

We use the test problems from the original DIRECT experiments in [34]. Table A.1 summarizes the charac-
teristics of the problems in this group [4].

Table A.1: Summary of test problems.

Problem Abbrev. Problem # Local # Global Global
Size Minima Minima Minimum

Branin BRA 2 3 3 0.397887
Six-Hump Camel CA6 2 6 2 -1.03163
Goldstein and Price GOL 2 6 2 3.00000
Hartman 3 HA3 3 4 1 -3.86278
Hartman 6 HA6 6 4 1 -3.32237
Shekel 5 SH5 4 5 1 -10.1532
Shekel 7 SH7 4 7 1 -10.4029
Shekel 10 SH10 4 10 1 -10.5364
2D Shubert SHU 2 760 18 -186.731

Branin (BRA). There are two versions of the two-dimensional Branin test function. The one listed in [4]
is

f(x) =
(
x2 −

5x2
1

4π2
+

5x1

π
− 6
)2

+ 10
(

1− 1
8π

)
cos(x1) + 10.

However, others have used

f(x) =
(
x2 −

5.1x2
1

4π2
+

5x1

π
− 6
)2

+ 10
(

1− 1
8π

)
cos(x1) + 10.

In our informal experiments, the first version matches the results in [4], while the second matches the results
in [34] (which does not explicitly list the function). We use the second version (with 5.1) in our results. Both
have constraints

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

Six-Hump Camel (CA6). The two-dimensional six-hump camel test function [58] is

f(x) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 + (−4 + 4x2
2)x2

2,

with constraints
−3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2.

Goldstein-Price problem (GOL). The two-dimensional Goldstein-Price test function [10] is

f(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
·[

30 + (2x1 − 3x2)2
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
.

with constraints
−2 ≤ xi ≤ 2 for i = 1, 2.

Hartman (HA3/HA6). The two Hartman test problems [10] are defined for n = 3 and n = 6 variables by

f(x) = −
4∑

j=1

cj exp

(
−

n∑
i=1

aij(xi − pij)2
)
,

with constraints
0 ≤ xi ≤ 1 for i = 1, . . . , n.
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For both n = 3 and n = 6, we have
c =

[
1.0 1.2 3.0 3.2

]
.

For n = 3, the matrices A and P are

A =

 3.0 0.1 3.0 0.1
10.0 10.0 10.0 10.0
30.0 35.0 30.0 35.0

 and P =

0.36890 0.46990 0.10910 0.03815
0.11700 0.43870 0.87320 0.57430
0.26730 0.74700 0.55470 0.88280

 .
For n = 6, the matrices A and P are

A =


10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00
1.70 8.00 17.00 0.10
8.00 14.00 8.00 14.00

 and P =


0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743
0.8283 0.1004 0.3047 0.1091
0.5886 0.9991 0.6650 0.0381

 .

Shekel (SH5/SH7/SH10). The three four-dimensional Shekel test functions [10] are defined by

f(x) = −
m∑

j=1

(
cj +

4∑
i=1

(xi − aij)2
)−1

,

for m = 5, 7, 10 with constraints
0 ≤ xi ≤ 10 for i = 1, 2, 3, 4.

Here
c =

[
0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5

]
and

A =


4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3.6

 .
Shubert (SHU). The two-dimensional Shubert problem [58] is

f(x) =

(
5∑

i=1

i cos ((i+ 1)x1 + i))

)(
5∑

i=1

i cos ((i+ 1)x2 + i)

)
,

with constraints
−10 ≤ xi ≤ 10 for i = 1, 2.
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